
Collecting, storing and reporting production process data in industrial applications.

Copyright © 2003 Peter Tiagunov
Licensed under the Academic Free License version 3.0

Author: Peter Tiagunov
Technical editor and consultant: John Weigand

Ladder logic design: John Machnack
Stored procedures design: Eric Chaves,

Peter Tiagunov
Report design: Peter Tiagunov

 The purpose of this document is to provide a relatively detailed view on the theory of collecting and
processing production data using available technologies.
 This document focuses on the methods of preparing and collecting data using the PLC5 or SLC5 Allen
Bradley industrial controllers and software tools provided by Rockwell Software Inc.
A similar approach can be used for other devices and software within a custom application environment.

Theory of operation:

 A production process may contain a lot of different parameters or variables that can provide important
information about the process to help identify potential problems and help correct them. Examples of such
parameters or variables are: temperature, pressure, weight, voltage, current, speed, torque, angle,
dimension, or practically any analog or discrete value that can be electronically read into an industrial
controller. A production process in most cases, is a continuous cycle process where the same activity takes
place over and over again. Collection of the history about the process or maybe about multiple processes
that take place around the same time is the key to learning and understanding the process(s) and their
interrelations.
There are 3 important components that describes the electronic data collection system:

1. The Data originator
2. The Collector
3. The Data Store

Note: The reporting portion is not a part of the electronic data collection system, but it can be applied at
any level where a Data Store is available.

 The Data originator – is a particular production operation (process) itself and data (samples, setpoints)
that will be collected for the operation (*). In other words the Data originator can be described as a
combination of sensors, transducers, switches, photoeyes etc., with controller input modules (cards) and
logic (if any) that process the inputs and produces the data.
 The Collector – is a mechanism that will transform (optional) and deliver the samples from the Data
originator to the Data Store.
 The Data Store – is a place where the samples are going to be stored, temporarily or for a long period of
time. The amount of samples can be defined (buffer) or it can be virtually unlimited (db table).
(*) The Data Store can be used as a source (link) for another Data originator as well. The links can be
reapplied as many times as needed (Fig.1). The format in which data presented in the Data Store may
change when the transformation is taking place in the Collector.

Fig.1

1

Server/PCController

Data originator

Collector

Data Store

Production
Process

Data originator

Collector

Data Store

Server/PC

Data originator

Collector

Data Store

SQL Data
Base

SQL Data
Base

This approach allows a greater flexibility and separation of components resulting in a faster deployment,
debugging and maintenance. Using data transformation enables the Collector to focus on a particular aspect
of the data.
Samples – a minimum amount of meaningful production data collected for a single subject of production.
Example of a sample: Max: 10, Min: 20, Actual: 15, Time: 01-01-2001 12:59:59.
Sample(s) could be collected on an event or a time interval basis. This document focuses on event based
sampling, when a sample collection is triggered by a specific event (trigger). The time interval sampling or
scanning method can be treated as event based sampling where an event is scheduled to trigger
periodically.

 Every time when a sample is taken, it becomes available in the Data originator. It is the responsibility of
the Collector to deliver the sample to the Data Store successfully. When data collection is critical it should
be treated as part of the production process. When sample(s) cannot be delivered successfully to the Data
Store, the production process must be interrupted until the sample(s) will reach their destination
successfully.
The destination in this case could be the first Data Store or Data Store located at the next level or levels.
Confirmation must be returned to production process when the sample(s) successfully reached the Data
Store at the desired level.
 When the production process has a high-speed cycle time <5 sec. the Data Store must accumulate
(buffer) some samples prior to passing them to the next level (Fig.2). While samples are passing to the
higher level the Collector can continue to add new samples to the buffer (Data Store). Sending data in
buffered chunks minimizes communication overhead. To avoid duplication, the Collector in the higher level
checks the samples before adding them to the Data Store at that level.
 When the production process has a slow-speed cycle time >5 sec., it is possible to allow the Collector to
acquire a single current sample remotely over the network (Fig.3). This approach is not applicable in public
networks and should only be used if a designated connection or networks were QoS (quality of service) was
provided.

 Fig.2

 Fig.3
Case Study:

Requirements: Collect, store and report induction heater temperature samples for each part. Data
collection is not critical.

Controllers used: SLC5/04 or PLC5 Allen Bradley.
Sensor: IRCON SR series.
Cycle Time: 5-6 sec.
Peak temperature samples received in the PLC via the analog input module.

2

Server/PCController

Data originator

Production
Process

Collector

Data Store

SQL Data
Base

Network

Server/PCController

Data originator

Collector

Data Store

Production
Process

Data originator

Collector

Data Store

SQL Data
Base

Buffer

Network

Approach:
Temperature samples from the analog module (Data originator) will be stored in the SLC memory’s buffer
(Data Store) using the program written in ladder code (Collector). The buffer will hold up to 32 samples
(Fig.4). Each sample includes the following data:

1. Index (incrementing number 1-32767)
2. Lo temperature set point
3. Hi temperature set point
4. Peak temperature read
5. Date and time when sample was taken
6. (Optional - Part Number information)

 Fig.4

The collector keeps writing new samples to the
buffer. When all 32 rows are filled the collector will
continue to write to the buffer starting from row
with address 0. Every time the collector updates
the row with address 31 it will start again with row
address 0 for the following sample. During this
process when the fill threshold is reached the
collector will raise the flag – indicating that new
samples are collected and ready for processing
(Fig.5). The fill threshold is a calculated variable
that allows raising the flag when buffer is partially
filled; for example at 85%, when the flag is raised,
the next threshold will be calculated for the next
85% beginning with the row where the last one
was identified.
This method ensures that there are always a few
(5-6) records kept from the previous collection
cycle. Having duplicate samples sent to the next
level guarantees that there will be no missing
samples. Samples could be missed while buffer is
being processed to the next level or samples can
be overwritten with new ones if buffer processing
is taking more time than the actual production
cycle. For a production cycle of 5 sec., 85%
threshold is optimum. It allows keeping about 5
records overlap – equivalent to 25 seconds. This
safe zone provides sufficient time to retry buffer
processing (Update Cycle) a few times in case if
first time process failed. Failure can occur as a
result of temporary network outage or some other
errors. The faster the cycle time the smaller the
fill threshold should be. Typically a 25 sec. safety
zone is sufficient. Example of the fill threshold
calculation shown in (Fig.6). Fig.5

3

Index Lo Peak Hi MM DD YYYY Hrs Min Sec

N15:0 N15:32 N15:64 N15:96 N16:0 N16:32 N16:64 N16:96 N16:128 N16:160

N15:1 N15:33 N15:65 N15:97 N16:1 N16:33 N16:65 N16:97 N16:129 N16:161

N15:30 N15:62 N15:94 N15:126 N16:30 N16:62 N16:94 N16:126 N16:158 N16:190

N15:31 N15:63 N15:95 N15:127 N16:31 N16:63 N16:95 N16:127 N16:159 N16:191

N15:29 N15:61 N15:93 N15:125 N16:29 N16:61 N16:93 N16:125 N16:157 N16:189

N15 N15 N15 N15 N16 N16 N16 N16 N16 N16

0

1

30

31

29

Row

SLC
File

START

New
Peak Temp
received?

N

First Scan?

Clear Array,
Row Addr = 0;

DataReady = 0;
N

Y

Y

Write HI,Peak,Lo,DateTime to
buffer were row address = Row Addr;

Fill threshold
reached?

Y

N

Row Addr = 31
Y

N
Row Addr = 0;

DataReady = 1; New samples ready for
processing to the next level

Row Addr = Row Addr + 1;

Avg. Cycle
time, sec.

Safety
Zone, sec.

Overlap
samples

Calculated
Threshold, %

(Buffer size = 8)

Calculated
Threshold, %

(Buffer size = 16)

Calculated
Threshold, %

(Buffer size = 32)

Calculated
Threshold, %

(Buffer size = 64)

1.0 25.0 25 Increase Buffer Increase Buffer 21.88 60.94
1.5 25.0 16 Increase Buffer Increase Buffer 47.92 73.96
2.0 25.0 12 Increase Buffer 21.88 60.94 80.47
2.5 25.0 10 Increase Buffer 37.50 68.75 84.38
3.0 25.0 8 Increase Buffer 47.92 73.96 86.98
3.5 25.0 7 10.71 55.36 77.68 88.84
4.0 25.0 6 21.88 60.94 80.47 90.23
4.5 25.0 5 30.56 65.28 82.64 91.32
5.0 25.0 5 37.50 68.75 84.38 92.19
5.5 25.0 4 43.18 71.59 85.80 92.90
6.0 25.0 4 47.92 73.96 86.98 93.49
6.5 25.0 3 51.92 75.96 87.98 93.99
7.0 25.0 3 55.36 77.68 88.84 94.42
7.5 25.0 3 58.33 79.17 89.58 94.79
8.0 25.0 3 60.94 80.47 90.23 95.12
8.5 25.0 2 63.24 81.62 90.81 95.40
9.0 25.0 2 65.28 82.64 91.32 95.66
9.5 25.0 2 67.11 83.55 91.78 95.89
10.0 25.0 2 68.75 84.38 92.19 96.09

 Fig.6 Example of fill threshold calculation table

The following example (Fig.7) illustrates how the threshold logic will perform under the following conditions:
Production Avg. Cycle: 9.0 sec.
Safety Zone: 25 sec.
Buffer size: 8 samples (see Fig.6, marked in red).

 Fig.7 Overview of fill threshold logic cycles

Note: In applications where data collection is critical, the production process must be stopped when safety
zone (overlap) time has elapsed and a confirmation about a successful update cycle has not been received.
This will guarantee that the non-sent samples in the buffer will not be overwritten.

For more details on the controller level collector and threshold see SLC ladder code in Attachment A.

At this point the portion of collecting samples at the controller level is covered. The next part will explain
what happenes when he “DataReady” flag is raised and how the Update Cycle will process the samples to
the next level. The following illustration provides an overview of the core elements of an electronic data
collection system (Fig.8)

4

 Fig.8 The core elements of an electronic data collection system

The Transaction Manager is the key component of the system. In conjunction with the Data Processing
Stored Procedure they represents the Collector. In this example, the RSSQL product (Rockwell Software
Inc.) will be used as the transaction manager. http://www.software.rockwell.com/rssql/.
Note: RSSQL includes generic OPC connector that can be used with third-party OPC servers.
The RSSQL will use the SQL stored procedure to write samples to the data base. “A stored procedure is a
group of Transact-SQL statements compiled into a single execution plan.” –Microsoft SQL Server Books
Online. The stored procedure used in this example will utilize input and output parameters. I/O parameters
provide flexible external interface for communication with another application. The RSSQL will connect the
samples data in the SLC to the Data Processing Stored procedure where the data would be transformed and
then stored in the database table. An overview of this interface shown in (Fig.9).

Fig.9 Interfaces and table design

The Transaction will be triggered by the HI transition in the “DataReady” word of the SLC(0 to 1). RSSQL
will then collects the entire buffer from the SLC, and trigger execution of a stored procedure with input
parameters read from the SLC.

5

http://www.software.rockwell.com/rssql/

Upon successful execution, the stored procedure will reset the trigger by returning 0 to “DataReady”
through the output parameter. If the transaction fails or times out Transaction Manager will retry the
execution after a predefined period of time, it will continue to retry execution until it is successful. See Data
Processing stored procedure code example in Attachment B.

Collecting production process data for multi-operational production processes

From a single operation process (heating parts) the focus will be switched to a multi-operational production
process. The following describes the multi-operational production process:
A production process where multiple operations with single or multiple subjects of production (parts)
performed during the same period of time on identified equipment and/or by identified individual(s) is called
multi-operational production process. Two examples of multi-operational production processes are
conveyors and assembly lines.

What is critical to the collection process of this type is part tracking. A unique identifier must be
assigned to every part that the data is collected for. In the case study, described earlier in this document,
the Part Index was used to identify the part. The index number in the case study was assigned temporary
and by the time when part left the line any relations between the actual part and index that had been
assigned to this part were destroyed. It would be impossible to track back to this particular part. This
problem will be solved if each part receives a permanent unique identifier that will remain with the part for
its entire life cycle, example: stamp, barcode, engravings, etc. This document focuses on types of processes
where unique identifiers were assigned temporarily. If multiple production equipment (machines) were
involved in the process, one of the controllers must provide part tracking functionality by maintaining part
indexes (identifiers) with their location through the entire production process (Fig.10).

Fig.10

From Fig.10, it is possible to see that the PLC#1 controller is responsible for tracking parts through the
entire line. Other PLC’s will request and/or update the Part Index number for each part when the operation
is ready to be performed by a particular PLC. The important part of the part tracking process is to identify

6

the methods and data format that are going to be used for data exchange between each individual station
and central location that hosts the part index and location information. Methods will include answers to the
following question examples:

- How the information about part index and its location will be requested and how is it going to be updated?
- What PLC is responsible for initiation request, update?
- How will Part Index be handled for rejected parts?
- What happens if the part(s) get manually removed from the line?
- How will the Part Index be handled if transfer allowed while part is not present at load or unload point?
- How to handle Part Tracking while individual station is running separately from the entire line?

Together, the methods and data format will describe the module and the connector of a Part Tracking
Interface. Once developed it can be simply reused through the entire line. The architecture of a connector
and module will depend on a particular line design and functional requirements, which will be different for
different lines.

Besides the Part Tracking connector the same approach can be used in a development of a control
connector that allows an exchange of standard sets of commands and states between the line control
modules and each individual station. Once again the control connector logic can be reused through the
entire line (Fig.11).

Note: The same interfaces are used between the modules located on different PLC’s and the modules
located on the same PLC (PLC#1). Physical networks, such as Ethernet, serve as a medium to connect the
modules between remote PLC’s.

 Fig.11

The Data Collection Connector, in the example described above, in comparison to the Control Connector and
the Part Tracking connector, has only the methods that are standard, while the format of collected data will

7

differ from station to station. Differences in data format are a result from different types of operations and
different types of samples that can be collected; for example tonnage, speed, torque and limits associated
with these parameters. An example of a Data Collection Connector data format is depicted in (Fig.4).
Examples of data collection and data exchange methods are depicted in (Fig.5).

Lets take a look at what is happening when samples are collected and ready to be sent to the data store.

Figure 12 is an overview of a temperature samples collection system. Multiple machines (stations) collecting
and buffering samples. Each machine (station) has its own transaction configured in Transaction manager.
Once data is ready, the Data originator will trigger the transaction allowing the data to be sent to the
database via the stored procedure. In this system, the format of data is consistent across the machines
where data is collected. See (Fig.4). In other words the Data Collection connector has standard methods
and standard data formats.
Having a standard Data Collection connector for multiple machines allows for the introduction of a single
Data Processing stored procedure that can be reused for these machines.

Note: In the case where data format differences are not significant from machine to machine there is still a
possibility to handle these machines via the same stored procedure. Obviously in this case the procedure
will become more complex. In order not to overcomplicate the system if the data format differences are
significant from one machine to another or from one group of machines to another, it is always better to
create two or more separate procedures that specialize in a particular area.

 Fig.12 Overview of a Temperature Samples Collection system.

Lets continue the overview of the temperature samples collection system. When a transaction is triggered,
the data from the machine will be sent to the buffer table via the stored procedure. The buffer table is
designed to temporarily hold records containing a set of the last samples from different machines. Having
the last updates (samples) stored temporarily in the buffer prevents duplicate entries (the buffer in the PLC
always contain a few overlapping records). Example of this table is shown in (Fig.9 on the left). Another
process (Scheduled Job) is designed to sort the records based on theirs Machine_ID numbers and move
them to a designated history tables (Fig.12). The same sorting process will create a new table
automatically, using the name provided in the FIS_Machine_Ref table, when a new machine is added to the
collection system. (See Attachment C for code example).

What would be the difference between the temperature samples collection system and data collection
system where data format is different from station to station? The data collection system is focused on
building process parameters history from a part perspective. In other words it provides a birth history for
each part. Compared to temperature samples where the collection system focus is placed on the actual
process itself.
Overview of a generic data collection system represented in (Fig.13).

8

 Fig.13 Overview of a generic data collection system

As a result of the data format differences four stored procedures are required, one for each station or
operation. The interesting part about the system is that collection processes are completely unparallel and
asynchronous. Data for the same part will be sent through four different buffers, transactions and stored
procedures. In the history table collected data will reunite in a single table record identified by the Part
Index identifier. As mentioned earlier, it is always a good practice, but not the goal, to look for opportunity
of reusing elements of the system. For example in the case of a generic data collection system, it may allow
a reduced number of data processing stored procedures.

The reporting part of the system is an ASP.NET web application with code behind approach. The application
is deployed on the IIS server is available via a browser. The same stored procedure is used to retrieve the
data. The report application interface allows a selection of different machines, a number of samples to
display and a scroll through the history of samples. Example of the temperature collection report screens
shown in Attachment E.

Conclusions

 It is a quite common problem (tendency) in the development of a data collection system to design the
entire system and its elements from scratch. This should be avoided. Using pre build components or shelf
products will reduce the debug time significantly; remember someone already went through the design,
stabilization and release steps with it. In two different systems the same components could be connected
together in a different way. Improvisation, architecture flexibility, balance between reusability and
complexity are the key elements to building a reliable system.

Software, operating system, tools and components involved:

PLC communication software: RSLinx Gateway (Rockwell Software Inc).
PLC Programming software: RSLogix500, RSLogix5 (Rockwell Software Inc).
Transaction Manager: RSSQL (Rockwell Software Inc). http://www.ab.com/
Database: SQL Server 2000 (Microsoft Corporation).
Operating system: Windows 2000 Server (Microsoft Corporation). http://www.microsoft.com/
Chart Generator: PopChart Standard (Corda Technologies Inc). http://www.corda.com/
Web development tool: Visual Studio.NET 2002 (Microsoft Corporation). http://msdn.microsoft.com/vstudio/productinfo/

9

http://msdn.microsoft.com/vstudio/productinfo/
http://www.corda.com/
http://www.microsoft.com/
http://www.ab.com/

Attachment A. Data Collection Simulator. Ladder logic for SLC5 processor example:

10

11

12

13

14

15

Attachment B. Data processing T-SQL stored procedure. Code example:

CREATE PROCEDURE sp_Process_TempTracking_data_from_Device
(
@p_Machine_ID int,

@p_PartIndex00 int,
@p_PartIndex01 int,
.
.
@p_PartIndex30 int,
@p_PartIndex31 int,
--
@p_LoSetpoint00 int,
@p_LoSetpoint01 int,
.
.
@p_LoSetpoint30 int,
@p_LoSetpoint31 int,
--
@p_PeakTemp00 int,
@p_PeakTemp01 int,
.
.
@p_PeakTemp30 int,
@p_PeakTemp31 int,

@p_HiSetpoint00 int,
@p_HiSetpoint01 int,
.
.
@p_HiSetpoint30 int,
@p_HiSetpoint31 int,
--
@p_MM00 int,
@p_MM01 int,
.
.
@p_MM30 int,
@p_MM31 int,

@p_DD00 int,
@p_DD01 int,
.
.
@p_DD30 int,
@p_DD31 int,

@p_YYYY00 int,
@p_YYYY01 int,
.
.
@p_YYYY30 int,
@p_YYYY31 int,

@p_HH00 int,
@p_HH01 int,
.
.
@p_HH30 int,
@p_HH31 int,

@p_MIN00 int,
@p_MIN01 int,
.
.
@p_MIN30 int,
@p_MIN31 int,

@p_SS00 int,
@p_SS01 int,
.
.
@p_SS30 int,
@p_SS31 int,

@o_Process_Complete int OUTPUT
)
AS
SET @o_Process_Complete = 1

16

DECLARE @index int
SET @index = 0
DECLARE @PartIndex int
DECLARE @LoSetpoint int
DECLARE @PeakTemp int
DECLARE @HiSetpoint int
DECLARE @DateTime varchar(20)
WHILE (@index<=31)

BEGIN
IF (@index = 0)

BEGIN
SET @PartIndex = @p_PartIndex00
SET @LoSetpoint = @p_LoSetpoint00
SET @PeakTemp = @p_PeakTemp00
SET @HiSetpoint = @p_HiSetpoint00
SET @DateTime =

CHAR(39)+CONVERT(VARCHAR(4),@p_YYYY00)+'/'+CONVERT(VARCHAR(2),@p_MM00)+'/'+CONVERT(VARCHAR(2),@p_DD00)+
'

'+CONVERT(VARCHAR(2),@p_HH00)+':'+CONVERT(VARCHAR(2),@p_MIN00)+':'+CONVERT(VARCHAR(2),@p_SS00)+CHAR(39)
END

IF (@index = 1)
BEGIN
SET @PartIndex = @p_PartIndex01
SET @LoSetpoint = @p_LoSetpoint01
SET @PeakTemp = @p_PeakTemp01
SET @HiSetpoint = @p_HiSetpoint01
SET @DateTime =

CHAR(39)+CONVERT(VARCHAR(4),@p_YYYY01)+'/'+CONVERT(VARCHAR(2),@p_MM01)+'/'+CONVERT(VARCHAR(2),@p_DD01)+
'

'+CONVERT(VARCHAR(2),@p_HH01)+':'+CONVERT(VARCHAR(2),@p_MIN01)+':'+CONVERT(VARCHAR(2),@p_SS01)+CHAR(39)
END

.

.

.

.

.

IF (@index = 31)
BEGIN
SET @PartIndex = @p_PartIndex31
SET @LoSetpoint = @p_LoSetpoint31
SET @PeakTemp = @p_PeakTemp31
SET @HiSetpoint = @p_HiSetpoint31
SET @DateTime =

CHAR(39)+CONVERT(VARCHAR(4),@p_YYYY31)+'/'+CONVERT(VARCHAR(2),@p_MM31)+'/'+CONVERT(VARCHAR(2),@p_DD31)+
'

'+CONVERT(VARCHAR(2),@p_HH31)+':'+CONVERT(VARCHAR(2),@p_MIN31)+':'+CONVERT(VARCHAR(2),@p_SS31)+CHAR(39)
END

EXEC ('IF NOT EXISTS (SELECT * FROM TempTrackBuffer
WHERE PartIndex = '+@PartIndex+' AND DateTime = '+@DateTime+')

BEGIN
INSERT INTO TempTrackBuffer

 (
Machine_ID,
PartIndex,
LoSetpoint,
PeakTemp,
HiSetpoint,
DateTime
)
VALUES
('
+@p_Machine_ID+','
+@PartIndex+','
+@LoSetpoint+','
+@PeakTemp+','
+@HiSetpoint +','
+@DateTime +
')

END
')
SELECT @index = @index+1

IF @index = 32
BREAK

ELSE
CONTINUE
END
SET @o_Process_Complete = 0
GO

17

Attachment C. Data separator T-SQL stored procedure (Scheduled Job). Code example:

CREATE PROCEDURE sp_DataDump

AS

DECLARE @Index INT
DECLARE @p_MachTableName VARCHAR(255)
DECLARE @p_Id VARCHAR(3)
DECLARE @SELcnt INT

SET @p_Id = 0

--GET INDEX COUNT OF TempTrackBuffer DATABASE EXCLUDING DUPS
SET @Index = (SELECT COUNT (DISTINCT MACHINE_ID)
FROM [dbo].[TempTrackBuffer])
--END INDEX COUNT

--BEGIN DATA COLLECTION LOOP UNTIL ALL DISTINCT RECORDS ARE COLLECTED
WHILE (@Index<>0)
BEGIN
--SET MACHINE TABLE ID BY MACHINE_ID IN TempTrackBuffer TABLE MOVING 1 ROW AT A TIME EXCLUDING DUPS
SET @p_Id = (SELECT DISTINCT TOP 1 CONVERT (VARCHAR(3), MACHINE_ID)
FROM [dbo].[TempTrackBuffer]
WHERE MACHINE_ID<>@p_Id)
--END NAMING

--GET TABLE NAME FROM FIS_MACHINE_REF TABLE USING TABLE ID AND REPLACE ANY SPACES WITH _
SET @p_MachTableName = (SELECT REPLACE (DESCRIPTION_M, ' ', '_')
FROM [dbo].[FIS_Machine_Ref]
WHERE Machine_Id_M = @p_Id)

--GET SELECT COUNT
SET @SELcnt = (SELECT COUNT (*)
FROM [dbo].[TempTrackBuffer]
WHERE MACHINE_ID = @p_Id) - 32

--IF MACHINE TABLE DOES NOT EXIST CREATE IT
If not exists (select * from dbo.sysobjects where id = object_id(N'[dbo].['+@p_MachTableName+']') and
OBJECTPROPERTY(id, N'IsUserTable') = 1)
BEGIN
EXEC
('
BEGIN
CREATE TABLE [dbo].['+@p_MachTableName+'] (

[Record_ID] [int] NOT NULL ,
[PartIndex] [int] NULL ,
[Machine_ID] [int] NULL ,
[LoSetpoint] [int] NULL ,
[PeakTemp] [int] NULL ,
[HiSetpoint] [int] NULL ,
[DateTime] [datetime] NULL

) ON [PRIMARY]
END
')
--UPDATE TABLE INDEX WITH NEW TABLE NAME
INSERT INTO [dbo].[Table_Index]
VALUES (@P_MachTableName)

END
--END CREATE TABLE IF NOT EXISTS

--COPY DATA FROM TempTrackBuffer TABLE TO MACHINE TABLE AND CLEAN UP TempTrackBuffer
IF @SELcnt > 32
BEGIN
EXEC
('
BEGIN
INSERT INTO [dbo].['+@p_MachTableName+']
SELECT TOP '+@SELcnt+' *
FROM [dbo].[TempTrackBuffer]
WHERE MACHINE_ID = '+@p_Id+'
ORDER BY DateTime asc

DELETE FROM [dbo].[TempTrackBuffer]
WHERE PartIndex IN (SELECT TOP '+@SELcnt+' PartIndex
FROM [dbo].[TempTrackBuffer]
WHERE MACHINE_ID = '+@p_Id+'
ORDER BY DateTime asc)
END

18

')
END
--END COPY AND CLEAN

--COUNT DOWN
SELECT @Index = @Index-1
IF @Index=0
BREAK
ELSE
CONTINUE
END
GO

Attachment D. Data retrieval T-SQL stored procedure. Code example:

SET ANSI_NULLS ON
SET ANSI_WARNINGS ON
DROP PROC sp_ScrollData
GO

CREATE PROCEDURE sp_ScrollData
(
@p_TableName VARCHAR(255),
@p_Size int, --50,500 or 1000
@p_DateTimeRef datetime,
@p_Direction varchar(3) --FWD, RWD
)
AS
-- Declare service variables

DECLARE @q VARCHAR(1)
SET @q = CHAR(39) -- This is quote '
DECLARE @v_DateTime VARCHAR(22)
SET @v_DateTime = CHAR(39)+''+Convert(Varchar(22),@p_DateTimeRef,120)+''+CHAR(39)

IF @p_Direction = 'Rew' -- Select previous n records << REW
EXEC ('SELECT a.* FROM
OPENROWSET('+@q+'SQLOLEDB'+@q+','+@q+'DETNTFISRPT1'+@q+';'+@q+'<<login>>'+@q+';'+@q+'<<password>>'+@q+',
'+@q+'SELECT top '+@p_Size+' [DateTime],LoSetpoint,PeakTemp,HiSetpoint from [DF_Heat_Track].dbo.

['+@p_TableName+']
WHERE [DateTime] <= '''+@v_DateTime+'''
ORDER BY [DateTime] DESC'+@q+') AS a
ORDER BY a.[DateTime]')

ELSE -- Select next n records >>FWD
EXEC ('
SELECT TOP '+@p_Size+' [DateTime],LoSetpoint,PeakTemp,HiSetpoint FROM .dbo.['+@p_TableName+']
WHERE [DateTime] >= '+@v_DateTime+'
ORDER BY [DateTime] ASC')

GO

19

Attachment E. Report examples:

20

	Fig.1
	 Fig.2
	 Fig.3
	Fig.9 Interfaces and table design

